رتبه بندی اعتباری مشتریان حقیقی بانک ها با استفاده از مدل های مختلف شبکه های عصبی: مطالعه موردی یکی از بانک های خصوصی ایران

Authors

  • ابوالفضل کاظمی استادیار دانشکده مهندسی صنایع و مکانیک- دانشگاه آزاد اسلامی واحد قزوین، (مسئول مکاتبات)
  • جواد قاسمی دانشجوی کارشناسی ارشد مهندسی مالی، دانشگاه علم و فرهنگ تهران
  • وحید زندیه دانشجوی کارشناسی ارشد مهندسی مالی دانشگاه علم و فرهنگ تهران
Abstract:

در گذشته تصمیم گیری در مورد اعطای تسهیلات به مشتریان بانکها در ایران به روش سنتی و بر پایه قضاوت شخصی در مورد ریسک عدم بازپرداخت صورت می پذیرفت. لیکن افزایش فزاینده تقاضای تسهیلات بانکی از سوی بنگاه های اقتصادی و خانوارها از یک سو و افزایش رقابت های تجاری گسترده و تلاش بانک ها و موسسات مالی و اعتباری در کشور برای کاهش ریسک عدم بازپرداخت تسهیلات از سوی دیگر موجب به کار گیری روش های نوین از جمله روش های آماری در این زمینه شده است. امروزه بانک ها به منظور پیش بینی احتمال کوتاهی در بازپرداخت تسهیلات و طبقه بندی متقاضیان خود از رتبه بندی اعتباری مشتریان خود بهره می گیرند. صرفه جویی در زمان، صرفه جویی در هزینه، حذف قضاوت های شخصی و افزایش دقت در ارزیابی متقاضیان انواع تسهیلات از جمله مزایای آن می باشد. روش های آماری مختلفی همچون تحلیل ممیزی، رگرسیون لجستیک، هموارسازی ناپارامتریک و نیز روش هایی چون شبکه های عصبی در زمینه ی رتبه بندی اعتباری مورد استفاده قرار گرفته اند. از این میان شبکه های عصبی به دلیل قابلیت طبقه بندی، تعمیم و یادگیری الگوها نسبت به سایر روش ها از انعطاف پذیری بالاتری برخوردار بوده و در سال های اخیر مورد توجه بیشتری قرار گرفته اند. در این مقاله، ابتدا با بهره گیری از پرسشنامه و نظر خبرگان بانکی به انتخاب بعضی معیارهای مهم در اعطای انواع تسهیلات اعتباری اعم از مضاربه، مشارکت مدنی، فروش اقساطی و جعاله به مشتریان حقیقی یکی از بانک های خصوصی کشور می پردازیم. سپس با ارائه چهار مدل MOE، MLP، LVQ، و RBF از شبکه های عصبی و استفاده از داده های مشتریان حقیقی بانک مزبور در معیارهای انتخاب شده به طبقه بندی آنها پرداخته و دقت رتبه بندی مدل های مزبور را مورد ارزیابی قرار می دهیم. نتایج حاکی از آن است که مدل MOE دقیق تر از مدل های MLP و RBF می باشد و مدل LVQ از دقت قابل قبولی برای رتبه بندی اعتباری متقاضیان بانکی برخوردار نیست.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

طراحی سیستم هوشمند ترکیبی رتبه بندی اعتباری مشتریان بانک ها با استفاده از مدل های استدلالی فازی ترکیبی

هدف اصلی تمام بانک های تجاری جمع آوری پس اندازهای افراد حقیقی و حقوقی و تخصیص آن ها به صورت تسهیلات به شرکت های صنعتی، خدماتی و تولیدی است . عدم بازپرداخت تسهیلات از جانب این مشتریان، بانک ها را دچار م شکلات عدیده ای از جمله ناتوانی در بازپرداخت وام های بانک مرکزی، بیشتر شدن مقدار تسهیلات از مقدار باز پرداختی های مشتریان و عدم توانایی اعطای تسهیلات می کند . اهمیت اعطای تسهیلات در صنعت بانکداری ...

full text

رتبه بندی اعتباری مشتریان بانک با استفاده از شبکه عصبی با اتصالات جانبی

استقرار نظام رتبه بندی اعتباری با توجه به حجم انبوه مطالبات معوق بانک ها، یکی از مهمترین ابزارهای کنترل ریسک اعتباری در بانک ها و موسسات مالی است. بر این اساس، هدف اصلی این مقاله رتبه بندی اعتباری مشتریان حقوقی یکی از بانک های دولتی داخل با استفاده از شبکه های عصبی است. شبکه های عصبی به دلیل دقت به مراتب بالاتر و حجم محاسبات پایین تر نسبت به سایر روش های کلاسیک در پیش بینی رفتار اعتباری افراد ح...

full text

رتبه بندی اعتباری مشتریان حقوقی بانک پارسیان

این مقاله با هدف مدلسازی سنجش ریسک اعتباری و اعتبارسنجی مشتریان در بانک پارسیان به روش رگرسیون لاجیت وپروبیت و مدل شبکه‌های عصبی هوشمند GMDH انجام می‌شود. بدین منظور اطلاعات و داده‌های مالی و کیفی یک نمونه تصادفی 400 تایی از مشتریان که تسهیلات دریافت نموده اند مورد بررسی قرار می‌گیرد. این حجم نمونه از مشتریان دارای حساب منتهی به سال 1388 انتخاب شده‌اند. در این مقاله پس از بررسی پرونده‌های اعتبا...

full text

رتبه بندی اعتباری مشتریان حقوقی بانک پارسیان

این مقاله با هدف مدلسازی سنجش ریسک اعتباری و اعتبارسنجی مشتریان در بانک پارسیان به روش رگرسیون لاجیت وپروبیت و مدل شبکه‌های عصبی هوشمند GMDH انجام می‌شود. بدین منظور اطلاعات و داده‌های مالی و کیفی یک نمونه تصادفی 400 تایی از مشتریان که تسهیلات دریافت نموده اند مورد بررسی قرار می‌گیرد. این حجم نمونه از مشتریان دارای حساب منتهی به سال 1388 انتخاب شده‌اند. در این مقاله پس از بررسی پرونده‌های اعتبا...

full text

تعیین رتبه اعتباری مشتریان حقیقی بانک ها با استفاده از شبکه های عصبی

مهمترین هدف این تحقیق، کمک به مدیران اعتباری بانک ها و موسسات مالی جهت اخذ تصمیمات اعتباری می باشد. مدیران موسسات اعتباری به کمک سیستم های رتبه بندی اعتباری، می توانند تصمیمات اعتباری خود را با دقت بیشتر، با صرف هزینه و زمان کمتری اتخاذ نمایند. در این تحقیق سعی خواهد شد با استفاده از اطلاعات موجود در پرونده های اعتباری مشتریان حقیقی بانک کارآفرین، مدلی قابل قبول جهت رتبه بندی اعتباری مشتریان حق...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 23

pages  131- 161

publication date 2011-12-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023